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A THEORY OF DYNAMIC OLIGOPOLY, II: 
PRICE COMPETITION, KINKED DEMAND CURVES, 

AND EDGEWORTH CYCLES 

BY ERIC MASKIN AND JEAN TIROLE1 

We provide game theoretic foundations for the classic kinked demand curve equilibrium 
and Edgeworth cycle. We analyze a model in which firms take turns choosing prices; the 
model is intended to capture the idea of reactions based on short-run commitment. In a 
Markov perfect equilibrium (MPE), a firm's move in any period depends only on the other 
firm's current price. There are multiple MPE's, consisting of both kinked demand curve 
equilibria and Edgeworth cycles. In any MPE, profit is bounded away from the Bertrand 
equilibrium level. We show that a kinked demand curve at the monopoly price is the 
unique symmetric "renegotiation proof" equilibrium when there is little discounting. 

We then endogenize the timing by allowing firms to move at any time subject to 
short-run commitments. We find that firms end up alternating, thus vindicating the ad hoc 
timing assumption of our simpler model. We also discuss how the model can be enriched to 
provide explanations for excess capacity and market sharing. 

KEiiwoRDs: Tacit collusion, Markov perfect equilibrium, kinked demand curve, Edge- 
worth cycle, excess capacity, market sharing, endogenous timing. 

1. INTRODUCTION 

MODELING PRICE COMPETITION has posed a major challenge for economic 
research ever since Bertrand (1883). Bertrand showed that, in a market for a 
homogeneous good where two or more symmetric firms produce at constant cost 
and set prices simultaneously, the equilibrium price is competitive, i.e., equal to 
marginal cost. This classic result seems to contradict observation in two ways. 
First, in markets with few sellers, firms apparently do not typically sell at 
marginal cost. Second, even in periods of technological and demand stability, 
oligopolistic markets are not always stable. Prices may fluctuate, sometimes 
wildly. 

Of course, one reason for these discrepancies between theory and evidence is 
that the Bertrand model is static, whereas dynamics may be an important 
ingredient of actual price competition.2 Indeed, two classic concepts in the 
industrial organization literature, the Edgeworth cycle and the kinked demand 
curve equilibrium, offer dynamic alternatives to the Bertrand model. 

In the Edgeworth cycle story, firms undercut each other successively to 
increase their market share (price war phase) until the war becomes too costly, at 
which point some firm increases its price. The other firms then follow suit 
(relenting phase), after which price cutting begins again. The market price thus 

1 We thank David Kreps, Robert Wilson, two referees, and especially John Moore, for very helpful 
comments. This work was supported by the Sloan Foundation and the National Science Foundation. 

2 Another possible explanation for lack of perfect competition-indeed, the most common 
theoretical one-is that products of different firms are not perfect substitutes. Alternatively, as 
Edgeworth (1925) suggested, firms may be capacity-constrained. 
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evolves in cycles. The concept is due to Edgeworth (1925), who, in his criticism of 
Bertrand, showed that static price equilibrium does not in general exist when 
firms face capacity constraints. His resolution of this nonexistence problem was 
the cycle. 

By contrast with the Edgeworth cycle, the market price for a kinked demand 
curve (Hall and Hitch (1939), Sweezy (1939)) is stable in the long run. This 
"focal" price is sustained by each firm's fear that, if it undercuts, the other firms 
will do so too. A firm has no incentive to charge more than the focal price 
because it believes that, in that case, the other firms will not follow. 

Despite their long history, the Edgeworth cycle and kinked demand curve have 
received for the most part only informal theoretical treatments. The primary 
purpose of this paper is to provide equilibrium foundations for these two types of 
dynamics. 

The basis of our analysis is a model of duopoly where firms take turns 
choosing prices (see Section 2). The alternating move assumption is meant to 
capture the idea of short-run commitment; see our companion piece for motivat- 
ing discussion. A firm maximizes the present discounted value of its profit. Its 
strategy is assumed to depend only on the physical state of the system (i.e., to be 
Markov). In our model, the state is simply the other firm's current price. 

We first show through examples that an equilibrium of this model may be a 
kinked demand curve or a price cycle3 (Section 3). Section 4 examines the general 
nature of equilibrium in our model. In particular, it establishes that any equi- 
librium must be either of the kinked demand type (where the market price 
converges in finite time to a unique focal price) or the Edgeworth cycle variety (in 
which the market price never settles down). 

Section 5 proves that there exists a multiplicity of kinked demand curve 
equilibria. Specifically, we exhibit the exact range of possible equilibrium focal 
prices when the discount factor is near 1. This range-a closed interval contain- 
ing the monopoly price-lies well above the competitive price. We argue in 
Section 6, however, that only one of these-the monopoly price equilibrium 
(which is unique)-is "renegotiation proof" in the sense that firms would never 
find it to their advantage to move to another equilibrium. We go on to investigate 
firms' adjustment to stochastic shifts in demand, showing, in particular, that an 
increase in demand may well trigger a price war. 

Section 7, which treats Edgeworth cycles, is the counterpart of Section 5 on 
kinked demand curves. It demonstrates, by construction, the existence of Edge- 
worth cycle equilibria if the discount factor is sufficiently near 1 and proves that, 
in any such symmetric equilibrium, average aggregate profit must be no less than 
half the monopoly level. 

In Section 8 we compare the qualitative nature of equilibrium in this paper 
with that of Part I of our study, which models competition in quantities/capaci- 
ties. Whereas here there are many equilibria, symmetric equilibrium is unique in 
the companion paper. The respective comparative statics, moreover, are com- 

3Unlike Edgeworth's treatment, price cycles in our model do not rely on capacity constraints. 
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pletely opposed. These contrasts can be traced to differences in the behavior of 
the cross partial derivative of the instantaneous profit function. 

We acknowledge in Part I of this study that a model where firms' relative 
timing is imposed is unduly artificial. Accordingly, in Section 9, we show that the 
fixed timing analysis through Section 7 continues to hold when embedded in 
either of the endogenous timing frameworks discussed in our companion piece. 

Our modeling methodology contrasts sharply with that of the well-established 
supergame model of tacit collusion. In Section 10 we draw a detailed comparison 
between the two approaches. 

Finally, in Section 11, we discuss how our model can be extended to accom- 
modate competition in quantities as well as prices. In particular, we provide 
explanations of two prominent market phenomena: excess capacity and market 
sharing. 

2. THE MODEL 

In this section we describe the main features of the exogeneous-timing duopoly 
model. Competition between the two firms (i = 1,2) takes place in discrete time 
with an infinite horizon. Time periods are indexed by t (t = 0,1, 2,...). The time 
between consecutive periods is T. At time t, firm i's instantaneous profit g1 is a 
function of the two firms' current prices pl and p2, but not of time: 7Tr= 
Ti( pt, p7). We will assume that the goods produced by the two firms are perfect 

substitutes, and that firms share the market equally when they charge the same 
price. The price space is discrete, i.e., firms cannot set prices in units smaller 
than, say, a penny.4 In most of the paper we assume that firms have the same 
unit cost c. Letting D(.) denote the market demand function, define 

(1) II(p)-(p-c)D(p). 

The total profit function 1(p) is assumed to be strictly concave. Let pm denote 
the monopoly price, i.e., the value of p maximizing (1). From our assumptions, 

(11(pi), if pt, pJ 

'rr'(pl, pt) H(p,)/2, if p;=pj, 

0, if p; >Pt. 

Firms discount the future with the same interest rate r; thus their discount 
factor is 8 exp (-rT). Because one expects that ordinarily firms can change 
prices fairly quickly, we will often think of T as being small and, therefore, of 8 
as being close to one. Firm i's intertemporal profit at time t is 

00 

E SSIi(pi p2) 

s=O 

4 The reason for this restriction is to ensure that optimal reactions exist. In a static Bertrand 
model, for example, best responses to prices above marginal cost are not defined when the price space 
is a continuum. 
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As in our companion paper, we begin by assuming that firms move alternately. 
In odd-numbered periods t, firm 1 chooses its price, which remains unchanged 
until period t + 2. That is, p?i = p1 if t is odd. Similarly, firm 2 chooses prices 
only in even-numbered periods, so that P2 1 = p2 if t is even. As in Part I, we 
impose the Markov assumption: a firm's strategy depends only on the payoff-rel- 
evant state, those variables that directly enter its payoff function. In our model, 
the payoff-relevant state is just the price the other firm set last period. Hence, 
firm i's strategy is a dynamic reaction function, a (possibly random) function 
R'(.), where pt = R( ptt- 1) is the firm's price in period t given that the other firm 
set pt 1 in period t-1. 

We are interested in Markov perfect equilibria (MPE): pairs of dynamic 
reaction functions forming perfect equilibria. From dynamic programming5 (see 
Maskin-Tirole (1988) for details), a pair (R1, R2) is an MPE if, for all prices fp, 

(2) v1(p) = max [1(p, ) + w(p)], 
p 

and 

(3) W1( =Ep[ 1(p, p) + S(p)] 

where R1( p) is a maximizing choice of p in (2), the expectation in (3) is taken 
with respect to the distribution of R2( p), and where the symmetric conditions 
hold for firm 2. The expression, V'(p) is firm i's valuation (present discounted 
profit) if (a) it is about to move, (b) the other firm's current price is p, and (c) 
firms henceforth play according to (R1, R2). The expression Wi(p) is firm i's 
valuation if last period it played p, the other firm is about to move, and firms use 
(R1, R2) forever after. 

Most of our results will be demonstrated for discount factors close to one, 
which, as we already suggested, is often a reasonable assumption for price 
competition. Thus, a typical proposition will hold for all 8 greater than a given 
8 < 1. We sometimes also require the set of possible prices to be sufficiently 
" fine." 

3. KINKED DEMAND CURVES AND EDGEWORTH CYCLES: EXAMPLES 

This section exhibits two examples of Markov Perfect Equilibria, one a 
"kinked demand curve," the other an "Edgeworth cycle." In both examples the 
market demand curve is given by D (p) = 1 -p, and production is costless. Firms 
can charge any of seven prices: p(i) = i/6 for i = 0,1, . . ., 6. The corresponding 
profits, I( p(i)) = p(i)(1 - p(i)) are proportional, respectively, to 0, 5, 8, 9, 8, 5, 
0. The monopoly price is ptm = p(3) = 1/2. 

Suppose that dynamic reaction functions are symmetric and described by 
Table I, where /3(3) (5 + 8)/(58 + 932) 

5 Because the set of available prices is finite, the instantaneous profit functions are bounded, which 
is sufficient for dynamic programming to be applicable. 
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TABLE I 

A KINKED DEMAND CURVE 

11(p) p R(p) 

O p(6) p(3) 
5 p(5) p(3) 
8 p(4) p(3) 
9 p(3) p(3) 
8 p(2) p(l) 
5 1 

( p(l) with probability ?(8) 
"'i) ' p(3) with probability 1 - fl(8) 

0 p(O) p(3) 

CLAIM 1: The pair of strategies (R, R), where R is given by Table I, forms an 
MPE for discount factors close to one. 

To prove Claim 1, it suffices to check that (2) and (3) are satisfied by the 
strategies in Table I. Let us verify two representative computations. To see that 
when the current price is p(3) a firm does not want to undercut to p (2), observe 
that staying at the monopoly price yields V(3) = 4.5(1 + 8 + 82 + ** * ) = 4.5/(1 - 
8). Undercutting to p(2) gives 8 + S. 0 + 82V(1) = 8 + 832 _(4.5) .(3 + 832 + * - ) < 
V(3) for 8 close to one (note that to compute V(1), we have used the fact that at 
p(l), one of the firm's best actions is to raise the price to p(3)). We next check 
that at p(2), a firm prefers to continue the price war rather than relenting and 
returning to p(3). The former yields 5 + 3W(1), whereas the latter gives 8(4.5)/(1 
- 8). Now, at p(l), each firm is indifferent between staying at p(l) and raising 
the price to p(3). Thus, V(1) = 8(4.5)/(1 - 8) = 2.5 + 3W(1), and so undercutting 
from p(2) to p(l) yields 2.5 + 8(4.5)/(1 - 8) > 8(4.5)/(1 - 8). 

Notice that ultimately the market price reaches p(3), the monopoly price, and 
thereafter remains there. To see why this equilibrium resembles that of the 
traditional kinked demand curve, suppose that the market price were p(3) and 
that firm 1 contemplated charging a higher price. Firm 1 would predict that firm 
2 would not follow suit-i.e., would keep its price at p(3). Firm 1 would thus 
anticipate losing all its customers by raising its price and so would find such a 
move undesirable. Altematively, suppose that firm 1 contemplated undercutting 
to p(2). In that first period, its market share would rise, and its profit would 
increase from 4.5 to 8. However, this action would trigger a price war: firm 2, in 
turn, would undercut to p(l). At p(l) a war of attrition would begin. Each firm i 
would like j to relent (to return to p(3)) first so that i could earn positive profit 
in the short run by charging p(l). The probability /(3) is chosen so that a firm is 
just indifferent between raising and not raising the price itself. 

Because price falls significantly in a price war, intertemporal profits are lower 
than had the price remained at p(3), even for firm 1, who triggered the war. 
Hence, it is not in the long run interest of a firm to undercut the monopoly price. 
Because of our perfection requirement, the length of a price war must strike a 
balance. On the one hand, it must be long enough to deter price cutting. On the 
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TABLE II 

AN EDGEWORTH CYCLE 

p R(p) 

p(6) p(4) 
p(5) p(4) 
p(4) p(3) 
p(3) p(2) 
p(2) p(l) 
p(l) p(O) 

p(O) f p(O) with probability a(8) 
\ p(5) with probability 1 - a(8) 

other hand, it must not be so costly that, when one firm cuts its price, the other 
firm is unwilling to carry on with the war and instead prefers to relent im- 
mediately. Despite these conflicting requirements, we shall see below that kinked 
demand curve equilibria always exist, at least for discount factors that are not too 
low. 

Our model permits a discussion of how firms react to cost and demand shifts. 
Scherer (1980, p. 168) observes that "prices tend to be at least as rigid downward 
as they are upward in well-disciplined oligopolies." From this empirical finding 
he concludes that if kinked demand curve theory is to explain pricing behavior, 
""the price must initially have been set below the profit-maximizing level if the 
subsequent emergence of a kink makes the price rigid against both upward and 
downward cost curve shifts." If other firms exactly match a cut in price, this 
conclusion is correct. Given that the initial price maximized joint profits, a firm 
can induce a shift to a new monopoly price if costs fall simply by cutting its price 
and waiting for the others to follow. 

In the kinked demand curve of Table I (and in the more formal treatment of 
Section 5), however, such a shift may not be possible. This is because price cuts 
are more than matched by the other firm. Thus even if the monopoly price fell 
from p(3) to p(2), the market price might remain at p(3) from firms' fear of 
starting a price war. (This argument relies on a particular choice of equilibrium 
when costs change, for which we have no theoretical justification. For a better 
grounded equilibrium selection model, predicting quite different behavior, see 
Section 6.) 

Consider next the dynamic reaction function given by Table II, where a(8) 
(3382 _ 1)(1 + 82 + 84)/(8 + 782 + 284 + 386). 

CLAIM 2: The pair of strategies (R, R), where R is given by Table II, forms a 
MPE for discount factors close to one.6 

In the equilibrium of Table II, firms undercut each other successively until the 
price reaches the competitive level, p(0), at which point some firm eventually 
reverts to the high price p(5). Market dynamics thus consist of a price war 

6Again, to prove Claim 2 it suffices to check that the strategies satisfy the dynamic programming 
equations (2) and (3) when the discount factor is high. 
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Market Price 

p(4) S 

p(3) * * 0 

p(2) * 0 

p(l) 

p(O) . s* 

Time 
FIGURE 1.-Edgeworth cycles. 

followed by a relenting phase. This second -phase is a "war of attrition" at p (0) 
in which each firm waits for the other to raise its price (relent). One may wonder 
why firms attach positive probability to maintaining the competitive price, where 
they make no profit. The explanation is that relenting is a public good from the 
firms' point of view. Both firms wish to raise their prices, but each would like the 
other to raise its price first so as to be able to undercut. Therefore, mixed 
strategies, where each firm relents with probability less than one, are quite 
natural as a resolution to this free-rider problem. 

Notice that during the price war phase, a firm undercuts not simply to increase 
market share but because, with good reason, it does not trust its rival. That is, it 
anticipates that maintaining its price will not prevent the other firm from being 
aggressive. In that sense, mistrust is a self-justifying attitude. 

Table II implies that a market onlooker would observe a cyclical path of 
market prices resembling that in Figure 1. We should emphasize that, unlike 
Edgeworth, we do not require capacity constraints to obtain this cycle. Neverthe- 
less, we call this kind of price path an Edgeworth cycle. 

Examples 1 and 2 together demonstrate that a kinked demand curve and an 
Edgeworth cycle can coexist for the same parameter values. As we shall see 
below, this is quite a general phenomenon. 

4. EQUILIBRIUM PRICE COMPETITION 

We now turn to an analysis of our general model. Recall that firms can charge 
any of n prices, which constitute the price grid. To simplify notation we will 
assume that the monopoly price pm belongs to the price grid, and that the grid is 
subdivided into equal intervals of size k (this is not essential). Taking a finer grid 
consists of shrinking k. Some of our results will depend on the grid being "fine," 
i.e., on k being "small enough." 

In this section we begin our characterization of equilibrium behavior. We first 
provide a few simple lemmas that are used repeatedly in the proofs of our 
propositions. We then consider long run equilibrium dynamics and show that 
whether or not the market price ultimately reaches a steady state is independent 
of initial conditions. 

Some Useful Lemmas 

Consider an MPE with valuation functions V' and W' for i = 1,2. 

LEMMA A: The valuation function Vi(-) is nondecreasing. 
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PROOF: For convenience, suppose that i = 1. Consider two prices p <p3. Let p 
belong to the support of R1(p). We have 

(p) =1p p) p p + W1(p) 

where the first inequality follows from the fact that a firm's profit is nondecreas- 
ing in its opponent's price, and the second inequality from the fact that A is a 
feasible reaction to p. Q.E.D. 

A price is "focal" for a pair of strategies if, once it is set, firms continue to 
charge it forever. Thus a focal price pf satisfies 

pf=Rl(pf) =R2(pf). 

LEMMA B: If p f is focal price, then H(p f ) > . 

PROOF: Suppose that, starting from pf, firm 1, say, raises its price to p >pf, 
where 1(p)> 0. If, contrary to the Lemma, I1(pf) < 0 (in which case Vl(pf) = 
V2( pf) < 0), the existence of p (we will handle the case where no such p exists 
below) implies that pf < pm and so Il(p) < 0 for all - f Because firm 2 has 
the option of reacting to p with p itself, V2(p) > 0. If, in fact, it reacts with a 
price below pf (it cannot react with pf since it would then earn nonpositive 
profit), it would therefore profit from cutting its price at pf, a contradiction. 
Thus, there exists a price A 

> pf with 1(p) > 0 such that with positive probabil- 
ity firm 2 reacts to p with p. (If for all p such that H(p) > 0, H(p) < 0 for all p 
in R2(p), then V2(p) < 0 for all such, p, a contradiction.) But then firm 1 can 
earn positive profit by also playing p, and so raising its price to p guarantees it 
positive expected profit. Thus I(pf) >0. 

If the firm cannot raise its price to p where 17(p) > 0, then pf > pm. In this 
case, however, the firm can always undercut and make a positive profit. Q.E.D. 

For an equilibrium pair of dynamic reaction functions (R1, R2), a semi-focal 
price is a price pf such that pf is in the support of both Rl(pf) and R2(pf). 

LEMMA C: If H(pf)> 0, a firm never reacts to a price p above a focal or 
semi-focal price, p f, by undercutting to a price p < pf or by raising its price. Thus 
the support of Ri(p) lies in the interval [pf, p]. 

PROOF: Let pf be a focal (or semi-focal) price. Assume that firm i reacts to 
p > p f by charging p < p f. We have 

1(p) + 3Wj(A) > H(pf) + w(pf) 
since firm i could have undercut to pf. But pf is a semi-focal price. Thus, firm i 
does not gain by undercutting to p when the other firm charges pf: 

(p) + 2wr(p + ) wi(pf 

But these two inequalities are inconsistent if 1(pf) > 0. 

7 I.e., pf exceeds marginal cost but is not so high as to choke off demand. 
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Imagine next that, for some i, there exists b e R'( p) with p > p > pf. Since 
firm i could instead have set pf, we have: 

swi(p) ? 11(pf) + wi( pf ), 

which implies that 

FI(pf) 
swi(i), > 

2 + swi(pf)2 

But this implies that pf is not a semi-focal price, since it tells us that at pf it is in 
firm i's interest to raise the price to p. Q.E.D. 

Ergodic Equilibrium Behavior 

Consider (possibly mixed) strategies R' and R2. In any period the market can 
be in any of 2n states. A state specifies (a) the firm that is currently committed to 
a price and (b) the price to which it is committed. The Markov strategies induce a 
Markov chain in this set of states. Let Xhg(t) denote the t-step transition 
probability between states h and g for this Markov chain. The states h and g 
(with h possibly equal to g) communicate if there exist positive t1 and t2 such 
that xgh(tl) > 0 and Xhg(t2) > 0. An ergodic class is a maximal set of states each 
pair of which communicate (see, e.g., Derman (1970)). A recurrent state is a 
member of some ergodic class. 

Rather than considering states, we focus on the market price, the minimum of 
the two prices in a given period. The market price does not form a Markov chain, 
but, abusing terminology, we shall refer nonetheless to recurrent market prices 
and ergodic classes of market prices. A set of prices forms an ergodic class of 
market prices if it corresponds to an ergodic class of states.8 A recurrent market 
price is a member of an ergodic class. 

We are interested in long run properties of Markov perfect equilibria, i.e., in 
their ergodic classes. An MPE is a kinked demand curve equilibrium if it has an 
ergodic class consisting of a single price9 (a "focal ergodic class"); it is an 
Edgeworth cycle equilibrium if it has an ergodic class of market prices that is not a 
singleton ("Edgeworth ergodic class"). 

A natural first question is whether an MPE can have several ergodic classes. 
This question is partially answered by Propositions 1 and 2. 

8 Formally, let P(h) denote the set of potential market prices when the state is h (remember that 
mixed strategies are allowed). A set P of prices is an ergodic set of market prices if and only if there 
exists a set of states H such that (i) H is an ergodic set of states and (ii) P = Uh ,E H P(h). 

9 We have labelled an MPE with a singleton ergodic class a "kinked demand curve equilibrium" 
because, as in the classic concept, no firm will wish to deviate from the focal price and because any 
such equilibrium has at least some of the salient properties of the example of Table I (whether it has 
all such properties remains an open question). As we shall see below (Propositions 1 and 2) each such 
MPE (for 8 near 1) does share the attractive feature of the example that, regardless of the starting 
point the market price eventually winds up at a unique steady-state pf (the focal price). Moreover, 
Lemma C ensures that a firm will react to a price p above pf with a price between p and pf. We 
conjecture that there always exists a price p < pf such that, at a price between p and pf, a firm 
undercuts but that at prices below p, the firm raises its price to a level not less than p1. 
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PROPOSITION 1: For a given price grid, an MPE cannot have two focal ergodic 
classes if the discount factor is close enough to 1. 

PROOF: Consider a fixed price space. First note that, if n( pl) 0 nI( P2), Pl 
and P2 cannot both be focal prices for a given MPE if 8 is sufficiently close to 1, 
as it would be in either firm's interest to jump to the high profit from the low 
profit focal price. Assume therefore that Pi and P2 are focal prices for which 
MI(PO) = (P2). If Pi <P2 then, at P2, a firm gains from reducing its price to Pi 
since it thereby gets the whole market to itself for one period (from Lemma B, 
l(pi) >0). Q.E.D. 

PROPOSITION 2: An MPE cannot possess both a focal and an Edgeworth ergodic 
class. 

PROOF: Suppose that an MPE has both a focal price pf and an Edgeworth 
ergodic class P. Let p be the highest price in P (recall that P is bounded). 
Because P is ergodic, there exist p e P (p <fi) and firm i such that 

(8) - is in the support of R( p). 

If p > p f, then P lies entirely above pf; otherwise, at some price in P above p f, 
one of the firms will undercut to a price below pf, a contradiction of Lemma C. 
But if P lies above pf, then (8) also contradicts Lemma C. Thus - 

<pf. 

For the firm i satisfying (8), 

(9) 
sri( 

>anpf) 

because it could have reacted to p by setting pf. But because pf is a focal price, 
firm i does not gain by lowering its price from pf to p: 

ii(pf ) 
(10) 2(1 - 8) > (p) + swi(p). 

Inequalities (9) and (10) imply that 

(11) IH(pf) > 2H(p), 

which in turn implies that p is lower than pm (otherwise, from the strict 
quasi-concavity of n, P would exceed pf). Now, in the class P, the market price 
is never above p. Therefore, 

> W(P), 

which, with (9), implies that 

2a(pn o (pf), 

a contradiction of (11). Q.E.D. 
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We have not yet been able to prove that an MPE cannot possess two 
Edgeworth ergodic classes. But Propositions 1 and 2 show that, in any case, 
Markov perfect equilibria can be subdivided into two categories that are indepen- 
dent of initial conditions. In one category, the market price converges in finite 
time to a focal price. In the other, the market price never settles down. 

Actually, we believe that the structure of Edgeworth cycle equilibria can be 
made more precise. As currently defined, an Edgeworth cycle is simply an 
equilibrium without a focal price. We conjecture that in any Edgeworth cycle 
with a sufficiently fine grid, there exist prices 

- 
and p (p <p) such that, for any 

p>p, Ri(p)=p; and for anype(p,p], p <R'(p)<p. 

5. KINKED DEMAND CURVES: GENERAL RESULTS 

In this section we completely characterize equilibrium focal prices (i.e., the 
steady-states of kinked demand curve equilibria) for fine grids and high discount 
factors. We first define two prices x and y (x < pm <y) that will play a crucial 
role in this characterization. Let x and y be the elements of the price grid (recall 
that pm belongs to the price grid) such that 

[I(x) > Ji(pm) > rI(x-k) and x <pm 
and 

HI(y) >2HI(pm)>FI(y+k) and y>pm. 

Thus profits at x and y are approximately four sevenths and two thirds of 
monopoly profit. We now study the set of prices that are focal prices of some 
MPE. This set is characterized in two steps. 

PROPOSTION 3 (Necessary Conditions): If pf is a focal price of some MPE, 
then for a high discount factor, (i) pf < y; (ii) and for a sufficiently fine grid, 
pf> x. 

PROPOSITION 4 (Sufficient Conditions): For a given (sufficiently fine) grid and 
a price p belonging to this grid and to the interval [x, y], p is the focal price of some 
MPE for a discount factor near one. 

Propositions 3 and 4 determine the set of possible focal prices for fine grids 
when firms place sufficient weight on the future. We should emphasize two 
aspects of this characterization. First, focal prices are bounded away from the 
competitive price (zero profit level); firms must make at least four-sevenths of the 
monopoly profit in equilibrium. Second, there is a nondegenerate interval of 
prices that can correspond to a kinked demand curve equilibrium. This multiplic- 
ity accords well with the informal story behind the kinked demand curve. As this 
story is usually told, if other firms imitate price cuts but do not imitate price 
rises, a firm's marginal revenue curve will have a discontinuity at the current 
price. As long as the marginal cost curve passes through the interval of discon- 
tinuity, the current price can be an equilibrium (see Scherer (1980)). 
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For complete proofs of these propositions, see Maskin-Tirole (1985). Here we 
attempt only to elucidate some of the ideas underlying Proposition 3 (see the 
Appendix for a sketch of a proof of Proposition 4). 

PROOF OF PROPOSITION 3(i): That a focal price must not exceed y is readily 
seen. Remaining at pf yields profit I( pf)/2(1 - 8). If pf exceeds y, undercut- 
ting to the monopoly price yields at least n1(pm) + 831( pf )/2(1 - 8), because 
the undercutting firm can always move the market price back to the steady state 
by returning to pf two periods hence. Thus, for equilibrium, we have: 

1H(pf)(j + 8 + 82)> J(pm) 

which means that for 8 near 1, a focal price above the monopoly price must yield 
at least two-thirds the monopoly profit. 

PROOF OF PROPOSITION 3(ii): We shall content ourselves with showing that in 
a pure strategy MPE (where each RK is deterministic), a focal price pf below pm 
must yield at least two-thirds the monopoly profit (allowing for mixed strategies 
reduces the lower bound to four-seventhsl). Let us fix the price grid, i.e., the 
interval k between prices. With pure strategies, Lemma C implies that 

(12) for p>pfandIl(p)>Il(pf), Ri(p)<p i=1,2 

(if Ri(p) =p for some i, firm j can guarantee itself 3I1(p)/2(l-3)> 
I(pf)/2(l - 3) for 8 close to 1, by relenting from pf to p and staying at p 
forever, and hence pf is not a focal price). Suppose, to the contrary, that 
1n(pf) < (2/3)I1I(pm). Let 

- >pf be the smallest price such that 

(13) ( > p + ) 

i.e., 

(14) H(p)+82 ii(pf) >3 1pf)+ iH(pf) 

For a fine enough grid, (13) implies that - E (pf pm). We claim first that 

(15) RL(p) =pf for all p E(pf, ], i = 1,2. 

Suppose to the contrary that there existed a price violating (15). Let p be the 
smallest such price. Then pf < Ri( p) < p for some i, implying 

(16) vi( P) = In(Ri(p)) + 3211(pf) 
2(1-38) 

10 This is because mixing allows the possibility of semi-focal prices. Consider an MPE where pf is 
a focal price and p( > pf ) is a semi-focal price. If, at pf, a firm should raise its price to p or above, 
the market price eventually returns to pf. Suppose, however, we ruled out mixing. Then p would have 
to be a full-fledged focal price itself, and thus the market price, once raised above p, would not return 
to pf. The fact that the market price would remain at p would give a firm a greater incentive to raise 
its price. Thus pf cannot be as low in a pure strategy as in a mixed strategy MPE. 
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By definition of p, V'(pl) is less than the right side of (13), a contradiction since 
the firm could always choose the price pt. Hence, (15) holds. 

Now, in view of (15) and the definition of p, R1(p + k) cannot lie in (p p) 
because firm i would do better to charge price pf. But, from (13), it does still 
better to charge p. Hence 

(17) R'(p+k)=p, i=1,2. 

We next argue that 

(18a) R'(-+2k)=-+k, i=152. 

From the above argument, R1(p + 2k) E {p, - + k}. Now, if, at - + 2k, firm i 
cuts its price to p, its profit is 

8211(pf) 

(p) 2(1-8) 

However, if, instead, it reduces its price to p + k, (17) implies that its profit is 

II(p + k) + 32(H(pf) + 2(1 - 8) ) 

which is bigger. Hence, (18a) holds. Similarly 

(18b) R{ - +3k)=-+2k. 

Because pf is a focal price, 

vJi(pf)- i(f), i=1,2. 2(1 -a8) 
However, if, at pf, firm i raises its price to - + 3k, (17), (18a), and (18b) imply 
that its payoff is no less than 

8 2I ( - + k ) + 84 ( pf ) + sri( pf) 
32(3k+31(t+2(1 -a8) 

which, from (14), is greater than V'(pf) for 8 near 1, a contradiction. Thus, as 
long as the grid is fine enough so that 

- 
+ 3k < pm, pf > x for 8 near 1. Q.E.D. 

Although this proof of the second part of Proposition 3 applies only to pure 
strategies, it should convey the intuition behind the result. If a putative price pf 
is too low, a firm does better by raising its price well above pf. If it does so, it can 
ensure that the price remains high long enough for it to recoup the loss it suffers 
from raising its price first. 

When the focal price is pm, there is a particularly simple kinked demand curve 
equilibrium in which each firm (i) cuts its price to pm when the market price is 
above pm, (ii) cuts its price immediately to a relenting price p when the market 
price is between p and pm; and (iii) raises its price to pm when the-price is below 
p. We shall call this the simple monopoly kinked demand curve equilibrium 
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(SMKE), and it will figure prominently below. Formally, the SMKE is given by 

pm, ifp < porp>,-pm, 
(19) R*(P)= p, if p E (p, pm), 

where p satisfies 

(20) 4rI(-p) >, H(pm) > 4-I(p p-k). 

(Notice that the existence of p is ensured by a sufficiently fine price grid.) The 
first inequality in (20) guarantees that, at a price between p and pm, a firm would 
rather cut its price to p (where it earns Il(p)(1 + 8) + (82H1(pm)/2(1 - 8)), the 
first term of which is approximately 2Il(p) when 8 is near 1) than raise the price 
to pm (where it earns (3S1(pm)/2) + (8211(pm)/2(1 - 8)), the first term of 
which is approximately If(pm)/2 when 8 is near 1). Similarly, the second 
inequality in (20) ensures that, at p or below, a firm would prefer to raise its 
price to ptm than to undercut, if 8 is near 1. The rest of the verification that the 
SMKE is an MPE proceeds in much the same way. 

The SMKE not only sustains joint monopoly profit but is the only MPE, even 
among those outside the kinked demand curve class, to approximate this profit 
level, as our next result shows. 

PROPOSITION 5: For a sufficiently fine grid, there exists 8 < 1 and E > 0 such 
that, for all 8 > 8, the unique MPE for which, at some price p, aggregate profit per 
period 

(21) (1 - 8)(Vi(p) + W'(p)) 

is within E of 17(pm), is the SMKE (given by (19) and (20)). 

The proof of Proposition 5 is fairly involved and so is relegated to the 
Appendix. It is not difficult, however, to see the main idea. If an MPE (R', R2) 
generates nearly the monopoly profit and 8 is near 1, the market price must equal 
pm a high fraction of the time along the equilibrium path. This implies that when 
the market price is pm, both firms will react by playing pm with high probability. 
This already tells us that the MPE must be (very nearly) a kinked demand curve 
equilibrium with monopoly focal price and that a firm's payoff per period is very 
nearly Il( pm)/2. The reason equilibrium takes the form given by (19) and (20) is 
that these strategies ensure that, should the market price ever deviate from the 
monopoly level, it will return to pm quickly. Thus, for example, when the market 
price p exceeds pm, firms react to p by cutting immediately to pm. A quick return 
to the monopoly price is an essential property of equilibrium since a firm always 
has the option of charging pm, providing a lower bound on its payoff of 
SWi(pm) (which, when 8 is near 1, translates into a payoff of very nearly 
I17(pm)/2 per period). Of course, when p E (p, pm), the price cannot return too 
quickly (i.e., it must first fall to p before returning to pm), otherwise a firm might 
find undercutting the monopoly price worthwhile. 
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6. RENEGOTIATION AND DEMAND SHIFTS 

An equilibrium is sometimes interpreted as a "self-enforcing agreement." 
Given that firms have "agreed" to play equilibrium strategies, no individual firm 
has the incentive to renege. In models with many equilibria, this interpretation 
has particular appeal as a way of explaining how firms know which equilibrium is 
to be played: the matter is negotiated, either openly or tacitly. 

Although the multiplicity of equilibria in our model accords neatly with the 
traditional kinked demand curve story, most of these equilibria do not hold up 
well as self-enforcing agreements. To see why, consider a kinked demand curve 
equilibrium in which a price cut precipitates a costly price war. Firms' strategies 
in the price war form an MPE, but it is difficult to see how such a war could 
come about if firms were able to negotiate. Specifically, after the initial price cut, 
firms might "talk things over." If there existed an alternative MPE in which both 
firms did better than in the price war, why would they settle for the war? Why 
should they not agree to move to the alternative (or some even better) MPE? But 
if firms renegotiated in this way, they could destroy the deterrent to cut prices in 
the first place. If a firm realized that lowering its price would not touch off a price 
war, it might find such a cut advantageous. Hence, our kinked demand curve 
equilibrium would collapse. 

The same criticism can be levelled against much of the analysis of tacit 
collusion in the supergame literature. Consider a repeated Bertrand price-setting 
game. It has long been recognized that the monopoly outcome (cooperation) can 
be sustained as an equilibrium outcome (assuming sufficiently little discounting) 
through strategies that prescribe cooperation until some firm deviates and margi- 
nal cost pricing thereafter. But if someone actually did deviate, firms would face 
an eternity of zero profits,11 a prospect that they might try to improve upon (by 
moving to a better equilibrium) were they really able to collude. 

To study behavior that is not subject to this attack, we will define an MPE to 
be renegotiation-proof if, at any price, p, there exists no alternative MPE that 
Pareto-dominates it."2 Essentially, the concept applies subgame perfection to the 
renegotiation process itself. 

The requirement of renegotiation-proofness drastically reduces the set of 
equilibria in our model. Remarkably, under the hypotheses of Proposition 4, the 
unique symmetric renegotiation-proof MPE is the simple monopoly kinked 
demand curve equilibrium we constructed in the preceding section. 

PROPOSITION 6: For a sufficiently fine grid, there exists 8 < 1 such that, for all 
8 > 3. the unique symmetric renegotiation-proof MPE when firms have discount 
factor 8 is the kinked demand curve equilibrium (R*, R*) given by (19)-(20). 

" The fact that in this example punishments last forever is inconsequential. Punishments of finite 
duration as in Abreu (1986) and Fudenberg-Maskin (1986) are subject to the same criticism. 

12 Basically the same criterion has been studied in the supergames literature by Rubinstein (1980) 
and Farrell-Maskin (1987). Actually, our concept here is a bit stronger than that of Farrell-Maskin 
because we do not require that the alternative MPE be renegotiation-proof itself. 
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PROOF: For 8 near 1 and any price p, 

(22) (1 - 8)(V*(p) + W*(p)) = (p ), 

where V* and W* are the valuation functions corresponding to MPE (R*, R*) 
(given by (19)-(20)). If at some price p there exists an alternative MPE (R1, R2) 
that Pareto dominates (R*, R*), then (1 - 8)(V1(p) + Wi(p)) is also nearly' 
H(pm), and so, from Proposition 5, (R1, R2) equals (R*, R*). Hence (R*, R*) is 
renegotiation-proof. 

Suppose that (R, R) is a symmetric MPE for 8 near 1. Then (1 - 8)V(p) 
nearly equals (1 - 8)W( p) for any p. If (1 - 8)(V( p) + W( p)) is appreciably 
less than 11(pe'), therefore, we have V*(p) > V(p) and W*(p) > W(p), imply- 
ing that (R, R) is not renegotiation-proof. If, on the other hand, (1 - 8)(V(p) + 
W(p)) nearly equals H1(pm), Proposition 5 implies that R = R*. Hence (R*, R*) 
is the only renegotiation-proof equilibrium for 8 near 1. Q.E.D. 

Proposition 6 has implications for the way we might expect firms to react to 
shifts in demand. Suppose that the current monopoly price is pm, but that in the 
future, the monopoly price might shift (either permanently or for a long period of 
time) to pm+ > ptm or p m < pm. Let us suppose that the probability of either such 
change in any given period is p. If p is small enough, it will not affect current 
behavior at all. Thus, if (R, R) is the renegotiation-proof MPE of Proposition 6, 
such behavior remains in equilibrium even with the prospect of a shift in demand 
(but before the shift actually occurs) as long as p is sufficiently small (alterna- 
tively, we could simply suppose that future shifts in demand are completely 
unforeseen). We will assume that after a shift occurs, firms move to the renegotia- 
tion-proof equilibrium (R_, R_) if the shift is downward, and to (R+, R+) if the 
shift is upward. 

Imagine that firms begin by behaving according to (R, R) and that eventually 
there is a downward shift in the monopoly price pm. Hence, if firms were at the 
steady-state price, i.e., at pm, beforehand, they can move directly to the new 
renegotiation-proof steady state afterwards. Thus price will fall from pm to pm 
once and for all. 

If, instead, there is an upward shift, the new monopoly price pm exceeds pm. If 
the shift is large, so that pm is less than the new "relenting" price p+ (the price 
below which firms return to focal price pm), then firms simply raise their prices 
directly to pm, and that is the end of the story. If, however, the shift is smaller, so 
that pm exceeds p +, the first firm to respond will cut its price (to gain a larger 
market share). This will be followed by an ultimate price rise to pm. Thus, 
comparatively small increases in demand temporarily lower prices (i.e., induce 
price wars) as firms scramble to take advantage of the larger demand. In the end, 
however, the higher demand induces a higher price. 

The possibility of price wars during "booms" in our model is consistent with 
the results of Rotemberg-Saloner (1986). However, their price wars arise for 
quite a different reason. In their model, which takes the supergame route, a 
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cartel's price must be (relatively) low in periods of booms because the temptation 
to deviate from collusive behavior is higher in a period of high demand. 

Our assumption that the probability of future demand shocks is small enough 
not to affect current behavior (or, alternatively, that future shocks are unantic- 
ipated) is strong. It would be desirable to extend the model to permit anticipated 
shocks that do influence the present. We feel, however, that the general conclu- 
sions of this section would be robust to such extensions. Shocks that call for a 
price reduction will tend to be accommodated swiftly, because downward adjust- 
ments are not costly. By contrast, raising one's price involves a short-run loss in 
market share, so that such adjustments are likely to be delayed. This fear of 
losing market share by raising one's price during booms, we feel, is the essence of 
the traditional kinked demand curve story. 

7. EDGEWORTH CYCLES: GENERAL RESULTS 

We now turn to Edgeworth cycles. We begin by establishing the general 
existence of Edgeworth cycles. 

PROPOSITION 7: Assume that the profit function 7f( p) is strictly concave. For a 
fine grid and a discount factor near 1, there exists an Edgeworth cycle. 

For a proof of Proposition 7, see our discussion paper. It may be instructive to 
consider the equilibrium strategies used in the proof. In this equilibrium, there 
exist two prices p and p- (p <p) on which the following symmetric strategies are 
based: 

p forp>p, 
p-k forp> p>p, 

(23) R(p) = cfoppc 
c with probabilityu(8)6) 

|p+ k with probability 1- u (8) ) P c 
c forp<c, 

where c is the marginal cost. 
Thus, beginning at p, the equilibrium involves a gradual price war until an 

intermediate price, p, is reached, at which point the firms undercut to the 
competitive price, where each firm tries to "induce" the other firm to relent first. 
The reader may wonder why, below marginal cost, firms raise the price only to c 
(which yields zero profit in the short-run). The explanation is the same as for the 
war of attrition at the competitive price in Table II of Section 3; a firm is willing 
to accept low profit today in the hope of making a killing should the other firm 
relent first. 

We now examine the question of how low profits can be in an Edgeworth 
cycle. For symmetric equilibria we have the following result. 



588 ERIC MASKIN AND JEAN TIROLE 

PROPOSITION 8: For a discount factor near 1 and a sufficiently fine grid, at least 
one firm earns average profit no less than (just under) a quarter of monopoly profit, 
lI(ptm), in an MPE. Hence, in a symmetric equilibrium, this must be true of both 
firms. 

PROOF: Consider an MPE (R', R2) for a fine grid and 8 near 1. Take 
p = ptm + k. Firm i reacts to p- either (i) by lowering its price, in which case its 
payoff is maxp <p (Ii(p) + 3W'(p)); or (ii) by keeping the same price, leading to 
payoff (H( -)/2) + 3W'(P); or by (iii) raising its price, which yields payoff 
maxp > W'(p). Let p* be the smallest price that maximizes firm i's payoff 
over these three alternatives. Then firm i reacts to p with a price no lower than 
p*. Suppose, without loss of generality, that 

(24) 1 
< p2 

We will show that firm l's payoff is bounded below by (slightly less than) 
II(ptm)/4. 

Case (a): p2 > pm. In this case, firm l's equilibrium payoff is at least 

(25) s 
2[Hw(p-mk) +3W1(pm-k)], 

since it could raise its price to pi and, after firm 2's reaction, undercut to pm - k. 
For the same reason, we have 

(26) Wl( pm -k) >, 83 (17(ptn- k) + SW'(pm -k)). 

From (26), (25) is at least 

2H82(pm - k) 

Thus firm l's payoff per period is at least JI(pm - k)/4 (minus e) if 8 is 
sufficiently close to 1. 

Case (b): p* < pm. In this case, for all p < p2, Hj(p2) + 6W2(p*2)> 11(p) + 

SW2(p) (since p* is the smallest maximizer). Moreover, 

(28) H(p,*) + 3W'(p ) > - H(pm) + (Wl(ppm). 

The first inequality and the fact that pl <p2 imply that, at a price above p* 
(e.g., pm), firm 2 will never set a price below pD. Therefore, 

(29) W(pm)> 2 

Combining (28) and (29), we obtain 

(30) (1- 8)Wl(pm)> H(ptM)>- ( I,) 
1 +6 2 , 
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which implies that for 8 near 1, 

(31) (1- O)Wl(pm) > I(p) 

But (1 - S)Wl(pm) provides a lower bound for firm l's profit per period, since 
the firm has the option of setting pm. Hence II(pm)/4 also is a lower bound. 

Q.E.D. 

Thus regardless of the equilibrium, the average market price must be bounded 
away from the competitive price. We showed above that in a kinked demand 
curve equilibrium, aggregate profit per period must exceed four-sevenths of the 
Monopoly profit. This result and Proposition 8 show that one should not expect 
low prices in equilibrium if firms place enough weight on future profit. This 
conclusion contrasts with the properties of an MPE in the simultaneous-move 
price-setting game, where profits are very close or equal to zero (Bertrand 
equilibrium)."3 

8. COMPARISON WITH THE QUANTITY MODEL 

We have seen that our price model can give rise to a considerable multiplicity 
of equilibria: a range of kinked demand curve equilibria as well as Edgeworth 
cycles. By contrast, the model of capacity/quantity competition in our com- 
panion piece, although ostensibly very similar in structure, has a unique symmet- 
ric MPE. 

The technical reason for this striking discrepancy is that the cross partial 
derivative of the instantaneous profit function fr behaves quite differently in the 
two models. In the quantity model, we assumed that (d 2sri)/( qdq'2) is negative 
-so that a firm's marginal profit is declining in the other firm's quantity. This 
implies that dynamic reaction functions are negatively sloped. The explanation 
for this negative slope is much the same as that for the downward sloping 
reaction functions in the static Cournot model: if marginal profit decreases as the 
other firm increases its quantity, then the quantity satisfying the first-order 
conditions for profit-maximization also decreases. (Were the cross partial always 
positive, reaction functions would be positively sloped.) Such nicely behaved 
reaction functions make the possibility of a multiplicity of symmetric equilibria a 
nonrobust pathology. 

By contrast, the cross partial in our price model changes sign: when the other 
firm's price is sufficiently low (i.e., lower than its own price), a firm's marginal 
profit is zero; when the two prices are equal, marginal profit is negative (since 

13 Assume that both firms are forced to play simultaneously (in odd periods, say). Then there is no 
payoff-relevant variable at the time firms make their decisions. Assume that the profit function is 
strictly concave in the firm's own price. If S2 is the mixed strategy of firm 2, firm l's profit can be 
written Sp Pr{ S2 = p } w&(pl, p). This function has a unique maximum or possibly two consecutive 
optitna p* and p* + k. The same holds for firm 2. A standard argument establishes that the 
maximum equilibrium price is c + k. 
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raising one's price drives away all customers); finally, when the other firm's price 
is higher, a firm's marginal profit is positive if its price is below the monopoly 
level. This nonmonotonicity of marginal profit gives rise to dynamic reaction 
functions that are decidedly nonmonotonic. In the kinked demand curve de- 
scribed by (19)-(20), a firm will respond to a price cut above the relenting price p 
by lowering its own price. But below p a price cut induces it to raise its price 
to pf. 

The price and quantity models also differ diametrically in their comparative 
statics. In the quantity model, an increase in the discount factor 8 means that 
firm 1 places greater weight on the future reduction of firm 2's quantity induced 
by a current increase in l's own quantity. Firm 1 therefore has the incentive to 
choose a correspondingly higher current quantity. Since the same reasoning also 
applies to firm 2, we conclude that an increase in 8 induces an increase in 
equilibrium quantities, i.e., a more competitive outcome. I 

An increase in 8 in the price model, by contrast, makes it more worthwhile for 
a firm to sacrifice current clientele by raising its price today in the expectation of 
future profit when the other firm follows suit. Thus an increase in 8 may well 
detract from the competitiveness of the outcome. This is most clearly seen when 
we compare equilibrium for 8 = 0 (the only possible equilibrium price in the long 
run is very nearly marginal cost) with that for 8 near 1 (perfect collusion becomes 
possible). 

Finally, the price and quantity models differ according to the value that length 
of commitment confers on a firm. We mentioned in the introduction to Part I of 
this study that contractual agreements may account for the sort of short-run 
commitment we have been discussing. The length of a contract, however, is in 
part a matter of choice, and so it is of some interest to consider the relative 
desirability of alternative conumitment periods. In the quantity model, it is clear 
that the incumbent firm is made better off as the length of its commitment grows. 
In the limit, it can attain monopoly profit by committing itself indefinitely. Thus, 
for contestability-like results to follow from a model where contracts form the 
basis of commitment, one must introduce some cost associated with lengthy 
contracts to prevent commitment of infinite duration. 

In our price model, on the other hand, commitment serves as impediment to 
firms. To the extent that a firm is conumitted to a price, it will find it difficult to 
recapture lost market share should it be undercut. Thus, in this model, a firm will 
opt for contracts of the shortest possible length. 

9. ENDOGENOUS TIMING 

We now turn to the issue of alternating moves, and briefly examine how this 
timing might be derived rather than imposed. The first model is the discrete time 
framework with null actions described in Section 4 of Part I. Thus, a firm is free 
to set a price in any period where it is not already committed. Once it chooses a 
price, it remains committed for two periods. It also has the option of not setting a 
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price at all, in which case it is out of the market for one period."4 Thus a Markov 
strategy for firm i takes the form { R1(.), S'}, where Ri(p) is, as before, i's 
reaction to the price p, and Si is its action when the other firm is not currently 
committed to a price. 

We are interested in whether the alternating structure we imposed in Sections 
2-8 emerges as equilibrium behavior in our expanded model. Accordingly, we 
will say that an MPE (Rl, R2) of the fixed-timing (alternating move) game is 
robust to endogenous timing if there exist strategies S' and S2 such that (i) 
({ R', S1 }, { R2, S2 }) is an MPE of the endogenous, timing game; (ii) starting 
from the simultaneous mode, firms switch to the alternating mode in finite time 
with probability one. Notice that because R1 and R2 are equilibrium strategies of 
the fixed timing game, they never entail choice of the null strategy. Hence, once 
firms reach the alternating mode, they stay there forever. 

Analogously, if (Sl, S2) is an MPE of the game in which firms are constrained 
to move simultaneously, we shall say that it is robust to endogenous timing if 
there exist reaction functions R' and R2 such that (iii) ({ R1, S1 }, { R2, S2 }) is an 
MPE of the endogenous-timing game; (iv) starting from the alternating mode, 
firms switch to the simultaneous mode in finite time with probability one. Our 
principal result of this section, proved in the Appendix, is the observation that 
symmetric alternating-move but not simultaneous-move MPE's are robust. 

PROPOSITION 9: For a sufficiently fine grid and a discount factor near enough 1, 
any symmetric alternating-move MPE (R, R) but no simultaneous-move MPE 
(Sl, S2) is robust to endogenous timing. 

The idea behind Proposition 9 is that, as we observed in footnote 13, firms earn 
very nearly zero profit in a simultaneous mode equilibrium, whereas, from 
Proposition 8, they earn at least a quarter of monopoly profit each in the 
alternating mode if 8 is near 1. Thus, in the simultaneous mode, a firm has the 
incentive to play the null action and move into the alternating mode. By the same 
token, neither firm has the incentive to upset alternating timing. 

Of course, the endogenous-timing model of this section is only one of many 
possibilities. An even simpler, but perhaps less reasonable (for price competition), 
model that also leads to equilibrium alternation is a continuous time model with 
random (specifically, Poisson) commitment lengths."5 If every time a firm set a 
price, it remained committed to that price during the interval At with probability 
1 - XAt, then the two periods of commitment in our discrete-time model 

14 We thus assume that retailers, say, who do not receive a new price list, do not carry the firm's 
product. One alternative would be to assume that retailers continue to charge the old price. Gertner 
(1985) shows that the conclusions are robust to this specification. Another interesting aspect of 
Gertner's paper is that it allows menu costs of price changes exceeding the one-period monopoly 
profit (undercutting never pays in the short run, but reactions to price cuts are also very costly). This 
reflects the possibility that decision periods are very short. 

15 For a fuller description of this example see our companion paper. 
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correspond exactly to the mean commitment length in the stochastic model. 
Moreover, all our results for the former model go through for the latter. 

10. COMPARISON WITH SUPERGAMES 

Several of the results of this paper underscore the relatively high profits that 
firms can earn when the discount factor is near 1. Thus our model can be viewed 
as a theory of tacit collusion. There is, of course, a variety of other such theories. 
The literature on incomplete information in dynamic games, for example, has 
shown that high prices may be sustained by oligopolists' desire to mislead their 
rivals. Kreps-Milgrom-Roberts-Wilson (1982) demonstrate the advantages of 
cultivating a reputation for being intrinsically cooperative. The firms in (the price 
interpretation of) Riordan (1985) secretly charge high prices today to signal to 
their competitors that demand is high, so as to induce them to charge high prices 
tomorrow. 

Another (more closely-related) alternative is the well-established supergame 
approach to oligopoly. Starting with Friedman (1977), the theory has produced 
many interesting applications, among them Brock-Scheinkman (1985), Green- 
Porter (1984), and Rotemberg-Saloner (1986), and undergone several develop- 
ments, e.g., Anderson (1984) and Kalai-Stanford (1985). W-e feel, however, that 
our approach may offer certain advantages over the supergame line. 
nature. A firm conditions its behavior on past prices only because other firms do 
so. If we eliminate the bootstrap equilibria, we are left with lack of collusion. 
Moreover, the strategies in the supergame literature typically have a firm reacting 
not only to other firms but to what it did itself.'6 By contrast, a Markov strategy 
has a firm condition its action only on those variables that are relevant in all 
cases of other firms' behavior. Thus, in a price war, a firm cuts its price not to 
punish its competitor (which would involve keeping track of its own past 
behavior as well as that of the competitor) but simply to regain market share. It 
strikes us that these straightforward Markov reactions often resemble the infor- 
mal concept of reaction stressed in the traditional industrial organization discus- 
sion of business behavior (e.g., the kinked demand curve story) more closely than 
do their supergame counterparts. 

Second, supergame equilibria rely on an infinity of repetitions. They break 
down even for long but finite horizons.'7 For example, any finite number of 
repetitions of the Bertrand price-setting game yields the competitive price at 
every iteration."8 We have not yet been able to prove that equilibrium in the 
finite period version of our price model converges to the infinite period equi- 

16 Indeed, this "self-reactive" property is often essential to obtaining collusion (see Section 3B of 
Maskin-Tirole (1982)). 

17 Unless there are multiple equilibria in the constituent game (see Benoit-Krishna (1985)). 
18 One can preserve supergame equilibria by replacing the infinite horizon with a reasonably high 

probability in each round that the game will continue another period. But this extension does not 
cover the case where the horizon length is determined fairly well in advance. 
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librium as the horizon lengthens.'9 But we have at least shown that for a long 
enough finite horizon, equilibriSum is not "close" to the competitive equilibrium, a 
result similar to Propositions 3 and 8. 

Third, the supergame approach is plagued by an enormous number of equi- 
libria. In the repeated Bertrand price game, any feasible pair of nonnegative 
profit levels can arise in equilibrium with sufficiently little discounting. Our 
model too has a multiplicity of equilibria but a smaller one. Propositions 3 and 7 
demonstrate, for example, that profits must be bounded away from zero. More- 
over, from Proposition 5, there is only a single equilibrium20 that sustains 
monopoly profits (whereas there is a continuum of such equilibria in the 
supergame framework). 

Finally, the supergame approach makes little distinction between price and 
quantity games: in either case any profit level between pure competition and pure 
monopoly is achievable for 8 near 1. As we suggested in Section 9, however, our 
approach does distinguish between the two. Quantity/capacity games are marked 
by downward sloping reactions functions and an increase in competition as the 
number of interactions between firms increases (or the future becomes more 
important), whereas price games exhibit nonmonotonic reaction functions and a 
decrease in competition as 8 rises. (In the terminology of Bulow et al. (1985), 
quantities are strategic substitutes, while prices are strategic complements for a 
range of prices and strategic substitutes for another.) 

11. EXCESS CAPACITY AND MARKET SHARING 

Although important, price is only one dimension in which oligopolists com- 
pete. In particular firms also make quantity decisions. In Maskin-Tirole (1985), 
we provide two simple examples that show how our model can be extended to 
provide explanations of excess capacity and market sharing. 

Excess Capacity 

In the kinked demand curve equilibrium of Example 1, undercutting the 
monopoly price is deterred by the threat of a price war. Recall, however, that in 
this example firms are not capacity constrained. Once we introduce such con- 
straints, it is easy to see that the monopoly price may not be sustainable if firm 2 
has only enough capacity to supply half the demand at the monopoly price. 
Indeed, firm 1 will wish to undercut if it has more than this capacity, and firm 2 
will not be able to respond effectively because it cannot expand output at lower 
prices to reduce the first firm's market share. Thus the threat of a price war is a 
significant deterrent to price cutting only if firms have more capacity than they 
will use when price is at the monopoly level. 

19 We have, however, obtained just such a convergence result for the Cournot competition version 
of the model (Maskin-Tirole (1987)). 

20 This equilibrium is, in fact, renegotiation-proof. 
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In the extended model of Maskin-Tirole (1985), firms choose capacities 
simultaneously and once-and-for-all; they then compete through prices as in 
Section 3. We exhibit an MPE in which firms accumulate capacities above the 
level necessary to supply half the market at the monopoly price, and yet charge 
the monopoly price forever. That is, the firms accumulate capacities that they 
never use simply to make undercutting less attractive for their rivals. 

Market Sharing 

In a static model, a firm always supplies the demand it faces as long as price 
exceeds its marginal cost. In a dynamic framework, however, a firm may temper 
its rival's aggressiveness by voluntarily giving up some of its market share. In 
Maskin-Tirole (1985), we construct an example in which firm 1 has a marginal 
cost lower than that of firm 2. When a firm chooses a price, it also chooses a 
selling constraint, i.e., the maximum quantity that it can supply at its chosen 
price (corresponding, for example, to the extent of its inventory). In the MPE, the 
firms charge a price above the monopoly price of firm 1 but below that of firm 2. 
To avoid triggering price-cutting by the low-cost firm, firm 2 imposes a market 
share less than one-half on itself. It thus "bribes" firm 1 to accept a compara- 
tively high market price.21 
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APPENDIX 

PROOF OF PROPOSITION 4: We must show that any price in [x, y] is a focal price for sufficiently 
high discount factors. To do this, we will consider three cases depending on the relative magnitudes of 
n(pf) and (2/3)II(pm) and of pf and pm, where pf is the focal price candidate in lx, y]. In each 
case, we will exhibit the equilibrium strategies giving rise to p1. 

Case (a): H(pf) > (2/3)l(pm) and pf <pm. In this case, equilibrium consists of both players 
using the strategy 

(pf, forpaptf, 

R (p) = p, forpf >p >p, 

pf, forp p, 

where p is chosen so that 

4II(p) > H(pm) > 4H(p - k) 

(notice that the existence of p is ensured by a sufficiently fine price grid). 

21 This is an example of a "puppy-dog" strategy: remain small so as not to trigger aggressive 
behavior by one's rival (see Fudenberg-Tirole (1984)). 
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Case (b): H(pf)> (2/3)H(pm) and pf>pm, In this case the equilibrium strategy for each player 
is 

{p,forp>-Pf 

Pl, forpf>p>pi, 

R Pl, with probability a l 

p, with probability 1-a J 

p , for p1 >p >p, 

pf, forp p, 

where pf > pm > p, >p and 

H(p)(l +8)>8 8N2 > , I(p k)(1 +8), 

(82 + 83 H (pi) f H(p1) ~82 +83 
H(-p)(1+?)+a 2 H(p)2 (2 ?alj 2 2 

H(pi) =H(pf) -, 

for - small. 

Case (c): H(pf) < (2/3)I(p') and pm >pf > x. Now we take 

p, if p >p, 
| , with probability a 

pf, with probability 1-a )f P p, 
R( p) = pf, ifp>p?,Pf, 

p, if pf>p>p, 

p, ifp p, 

where p"'>p>pf>p and 

n(p) (pf)(I+ 8 
>(p(P-)k), 

2 

v(P) () + 8w(P) = n(pf) + 8 H(P f), 

HI(p)(l + 8) + 82V(p) > 8W(P) > H(p - k)(I + 8) + 82 V( p), 

(2 + 8)I(pf) - H(p) 
6H 

(j))+82H(pf) 

Here V(p) is the valuation of a firm when its rival has just played p, and W(p) is the firm's 
valuation when it itself has just played p. Notice that p5 as defined above exists and is unique, since 
11(pf) < (2/3)I1(pm). For 8 large and k small, a is approximately equal to one fifth. 

For the straightforward verification that the strategies defined in Cases (a)-(c) form equilibria, see 
Maskin-Tirole (1985). Q. E. D. 

PROOF OF PROPOSITION 5: Fix the price grid. Assume for convenience that: 

(AO) there exists no feasible price p such that 11(p) = H( p' )/2. 

For any a E (0, 1), there exist e > 0 and 8 < 1 such that, if (RI, R2) is an MPE (with discount factor 
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8> 8) such that 

(Al) (l-8)(Vl(p)+ W2(p))> H(pn)- E for some p, 

then 

(A2) Prob { R'(p')>pm}> a for i=1,2. 

If E is small and 8 is near 1, then (Al) implies that the market price is pm most of the time. But 
then the reaction to pm must, with high probability, be a price p no less than pm (if p <pm, then p 
becomes the market price). 

Formula (A2) ensures that, for a near 1, a firm can guarantee itself a payoff of nearly H(pm)/2 
per period simply by always setting the price pm. Indeed, if Prob { R'(p') > pt } is near 1, firm j can 
obtain nearly H(pt) per period from this strategy. Hence, for E small and 8 near 1, an MPE 
(Rl, R2) satisfying (Al) also satisfies 

(A3) II(p')12- V'(pn)(1 -8)> II(p)12, for all p Opm, 
and 

(A4) Prob {RI(pm)=pm}>O, i= 1,2 

Formula (A4) implies that p mis a semi-focal price. 
We first claim that if (R, R2) satisfies (Al) for E small and 8 near 1, then 

(A5) p>pm implies R'( p) =pm for i = 1,2. 

Let p be in the support of Ri( p) for some i and p >pm. Because ptm is a semi-focal price, 

(A6) pE[pm p] 

Suppose that p is the smallest price such that p E (ptm, p] for some realization p of Ri( p). If p <p, 
then 

(A7) Vi(P)= H(p)+82Vi(pm) 

which contradicts the facts that V1(p) > V(ptm) and Vl(ptm)(l - 8) H Il(ptm)/2 for 8 close to 1. If 
p=p, then 

VI(p) < (l/2)H(p)(l + 8) + 82Vi 

since RJ(p) < p and Vi(.) is nondecreasing. Hence V1(p)(1 - 8) < II(p)/2, which again contradicts 
(A3). We conclude that (A5) holds after all. 

We next argue that, for the MPE under consideration, 

(A8) if p < pm and p is a realization of R' (p), then p ptm. 

If instead p > pm, then from (A5) 

(A9) 82V1(pm)?8Wi(pni). 

But from (A4), 

(AlO) VI (pm) =H(ptm)/2+8W (ptm). 

Formulas (A9) and (AlO) imply that 

H(ptm) 
WI (PM)(' -8) <8 '(PM8) 

which contradicts (A3) and (AlO). Hence, (A8) holds. 
Next we demonstrate that 

(All) if p <-pm and p ( > p) is a reahzation of R'(p), then p =pn. 

Clearly, if p is a realization of R1( p) and p > p, we have 

(A12) WI(p) ? WI(ptM). 
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From (A8) p 6 pt, and so, if p * pm, 

(A13) II (p)/2 + 8 W1(p) > H(p) + ?8W(p). 

Thus (AO), (A12), and (A13) imply that 

(A14) 
'(PM) 

> I(P)- 2 

Now, RJ(p) 6 pm. Hence, because V'(-) is nondecreasing and pm is a realization of R'(pm), 

(A15) W(p)6 ,(p) + 8v(PM) = n(p) + 8 (P ) +82W(pm). 2 

From (A12) and (A15) we infer 

W1(PM)(1l8)< (n(P)+8 '(PM) (1 + 8), 

which, in view of (A14), contradicts (A3) and (A10). Hence (All) holds. 
We next argue that 

(A16) forallp6p, R'(p)=pm, i=1,2, 

where p is defined by (20). For i = 1, 2, define pi so that 

82Hl(pm)+8 i(m (A17) (1 +8)H(p) + 2 +8W(p) 

82HI(M) 8w(pm) . > 8W1(pm)> (1 + 8)H(p' - k) + 2 + +3W(pm). 

Rearranging, we obtain 

(A18) (1-+8)H(pl -k) + 
82 (pm) <8(l+ 8)W (pM)(l-8) 

<(1 + 8)H (pl) + 82H(PM) 
2 

Now, for 8 near 1, the middle expression of (A18) is nearly IH(pm). Hence, for such 8, p1 =p, i = 1, 
2. Consider firm i when the current market price p is less than or equal to p. If it chooses a price no 
higher than p, then an upper bound on its payoff is the right side expression-of (A17), since the best it 
can hope for is that the other firm reacts by raising its price to pm. If, instead, firm i raises its price to 
p", it obtains the middle expression of (A17). The second inequality of (A17), therefore, establishes 
(A16). 

We must now show that 

(A19) forpe(p,pm) Rl(p)=p, i=1,2. 

Consider p E (p, p"). From the first inequality in (A17), a firm is better off cutting its price to p than 
raising it to p"7 when the current price is p. The only other possibility is that the firm could choose 
some price in (p, p]. Let p be the smallest price in (p, ptm] for which for some firm i there exists 
p (p, p] in the support of RI( p). Then, from (A16), 

(A20) V (p< I(p)+83 W (pm). 

If, however, firm i raises its price directly to pm from p, it obtains 8W(p`'), which (since 
(1 - 8) Wl(pm) is nearly HI(pm)/2) is greater than the right side of (A20), a contradiction. We 
conclude that (A19) holds after all. 

We have demonstrated that for E small and 8 near 1, an MPE (R1, R2) satisfying (Al) also 
satisfies (19) for p #pn'. It remains to show that Rl(pm) =pn'. Let p be a realization of Rl(p"'). If 
p > pn, then (A5) implies that Vi(pm') =82Vi(pm), which is clearly false. The argument of the 
previous paragraph ((A20) in particular) demonstrates that p cannot lie in (p, pn'). Suppose p = p. 
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Then V(pm) = II(p)(l + 8) + 82V(p,), which implies (1 - 8)V(p') = H(p), a contradiction of the 
fact that (1 - 8)V(7pm) is near H(pm)/2. Thus, we conclude that R(pm) =pm. Q.E.D. 

PROOF OF PROPOSITION 9: Consider a symmetric MPE (R, R) of the alternating-move model, and 
let V(p) and W(p) be the associated valuation functions. Let p denote the smallest price that 
maximizes Il(p) +8 W(p). We will construct a strategy S* for the simultaneous mode such that 
( R,S*)) forms an MPE for the endogeneous-timing game. 

For the moment, suppose that firms, when in the simultaneous mode, can choose either (a) the null 
action or (b) a price no greater than p (we will admit the possibility of firms' choosing prices greater 
than p later on). Once we specify firms' behavior in this mode, then their payoffs are completely 
determined, assuming they play according to R in the alternating mode. Thus we can think of firms in 
the simultaneous mode as playing a one-shot game in which they choose mixed strategies S1 and S2 
and their payoffs are determined by ({ R, Sl }, (R, S2)). Because this is a symmetric game there exists 
a symmetric equilibrium (S*, S*). Let U* be a firm's corresponding present discounted profit. We 
claim that ({ R, S*), { R, S*}) is an MPE for the endogenous-timing game. 

We first note that S* must place positive probability on the null action. If this were not the case, 
then firms would remain in the simultaneous mode forever. But, as we argued in footnote 13, any 
simultaneous-mode equilibrium must entail (essentially) zero profit. By contrast, if a firm played the 
null action and thereby moved the firms into the alternating mode, Proposition 8 would guarantee it 
at least a quarter of monopoly profit, which is clearly preferable. Thus SF must indeed assign the null 
action positive probability. 

We next observe that, in the simultaneous mode, firm i cannot gain from choosing a price p 
greater than p, given that firm ] sticks to S*. If firm j does not choose the null action-i.e., it selects 
a price-then firm i sells nothing with a price greater than p. If firm j does select the null action, 
then the firms move into the alternating mode, and firm i's payoff is H(p) +8 W(p), which, by 
definition of p, is no greater than that from choosing p. Hence a firm has no incentive to choose 
prices greater than p in the simultaneous mode. 

It remains only to show that, in the alternating mode, a firm has no incentive to play the null 
action. If it did so, its payoff would be 8U*, since the firm would then be in the simultaneous mode. 
Now, because, as we have noted, it is optimal for a firm to play the null action in the simultaneous 
mode, 

U* < 8V(p). 

Hence, by playing the null action in the alternating mode, a firm obtains a payoff less than 82V(p). If 
instead it chooses a price p > p, the other firm will react with a price no lower than p, and so its 
payoff is at least 82 V(p). Hence the null action is not preferable. 

To see that a simultaneous-move MPE (S1, s2) cannot be robust to endogenous timing, recall that 
in such an equilibrium, S' ? c + k for i =1, 2. Now if (S', S2) were robust, there would exist 
reaction functions R' and R2 such that, starting from the alternating mode, firms switch to the 
simultaneous mode in finite time and remain there forever. But, using much the same argument as in 
the proof of Proposition 8, we can show that at least one firm can obtain a per period equilibrium 
payoff that is bounded well away from zero, which contradicts the upper bound of H(c + k)/2 it 
earns in the simultaneous mode. Q.E.D. 
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